80558 MULTIRATE SIGNAL PROCESSING

Part I: Basics and Motivation

e The purpose of this part is to give some motivation
for multirate digital signal processing.
e Iirst, the starting point for processing continuous-time
signals with the aid of digital signal processing is con-
sidered.
e Second, the need for sampling rate alteration is dis-
cussed.
e Third, the two types of sampling rate alteration are
considered:

e Sampling rate reduction, called decimation.

e Sampling rate increase, called interpolation.

e Fourth, some applications are considered.



Starting Point for Digital Signal Processing

Sampling theorem: A continuous-time signal can be
reconstructed from its sample values if the sampling
frequency f, = 1/T (T is the sampling period) is at
least two times the highest frequency component of the
signal, that is, X(j2xf) =0, f > fs/2. See the figures

shown below.
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Processing of a Continuous-Time Signal with the
Aid of a Digital Filter

e Based on the sampling theorem, the processing of a
continuous-time signal can be performed with the aid
of the discrete-time system as shown on the next page.
e In order to satisfy the conditions of the sampling the-
orem, the continuous-time signal has to band-limited to
the frequency range —f;/2 < f < f;/2 using an anti-
aliasing filter.

e [deally, the output signal can be generated from the
output samples y(nT) = Y (n) with the aid of the fol-
lowing sinc-interpolation:

Sm (t —nT)/T
Z y(nT) t—nT))é : ()

k=—00
e In practice, an analog reconstruction filter is used for
approximating this interpolation.
e In the frequency domain, this means that from the
periodic response of the discrete-time output signal only
the baseband frequencies —f;/2 < f < f;/2 are pre-

served.



Processing of a Continuous-Time Signal with the
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Needs for Alterating the Sampling Rate f,

e There exist several situations where the signal of in-
terest is staying in a frequency range that is very small
compared to half the sampling rate f;/2 as shown in

the following figure.

Ix(el2™/Ts)]
/ Desired signal
| .
p) , fs/2 f

‘e In the case of this figure, the sampling rate f/; = fs/3

could be used.

e There are several advantages of using ]/”; as a sam-
pling rate, instead of fs;, and to make it as small as

possible.
Advantage 1 of Using a Lower Sampling Rate:

The number of samples is reduced by a factor of f,/ ]?3

so that the processing workload is significantly reduced.
e Lor instance, if in the case of the figures on page
2, X(j2nf) =0, f > (fs/2)/3, then sampling rate

fs = f,/3 can be used.
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This means that the corresponding sampling period
T=1 / fs — 37'. In this case, only every third sam-
ple of the first figure are needed for carrying the

information of the continuous-time signal!

Advantage 2 of Using a Lower Sampling Rate:

The

discrete-time systems become easier to implement.
As shown on the next page, the order of an FIR
filter reduces approximately by 10 if the sampling
rate is reduced by this factor.

Taking into account the fact that also the number
of data samples is only one tenth, the overall sav-
ing is approximately 10-10=100!

Pages 7 and 8 illustrate what happens in the case
of elliptic 1IR filter.

For these filters, the order either remains the same
or decreases by one when using a lower sampling
rate.

The main advantage lies in the the fact that the
poles of the filter implemented using a lower sam-
pling rate are further away from the unit circle.
This means that the finite wordlength effects are
significantly milder: significantly fewer bits are re-
quired for both the data and coefficient respresen-

tations.



Linear-Phase FIR Filter with Passband and Stop-
band Edges at 250 Hz and 500 Hz and Passband
and Stopband Ripples of 0.01 and 0.001 for the
Amplitude Response

FIR Filter of order 216 for fS =20 kHz
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Elliptic Filter with Passband and Stopband Edges
at 250 Hz and 500 Hz and Passband and Stop-
band Ripples of 0.2 dB and 60 dB

Elliptic Filter of order 6 for fS =20 kHz
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Elliptic Filter with Passband and Stopband Edges
at 250 Hz and 500 Hz and Passband and Stop-
band Ripples of 0.2 dB and 60 dB

e Since the filter poles for f; = 2 kHz are not so close
to the unit circle, the coefficient sensitivity as well as

the output noise are much lower than for f, = 20 kHz.

Elliptic Filter of order 6 for fS =20 kHz
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Needs for Alterating the Sampling Rate f;

e In addition to the above example, there are numer-
ous other applications where it is advantageous or even
necessary to change (reduce or increase) the sampling
rate, as will be seen later on in this course.

e In our example case, the sampling rate of the signal
of the system of Page 4 could be reduced according to
the characteristics of our input continuous-time signal.

e However, in most applications, there exist signals hav-
ing different bandwidths.

e Therefore, it is preferred to study how to change the

sampling rate directly in the digital domain.
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The Two Basic Types for Sampling Rate Alter-

ation

e There exist two types of sampling rate alteration,
namely decimation and interpolation.

e As shown below, in the case of decimation, the num-
ber of samples is reduced.

e This means that the sampling period is increased and
the sampling rate is decreased.

e In the case of interpolation, the number of samples is
increased.

e This means that the sampling period is reduced and

the sampling rate is increased.

X0}y y(m) 4

Decimation

Interpolation
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Decimation by an Integer Factor M

e When reducing the sampling rate by an integer fac-
tor of M, the overall system is constructed as shown
on the next page.

e The first step is to filter the input signal z(n) with a
transfer function H(z) so that the z- and Fourier trans-

forms of the filtered signal w(n) are given by
W(z)=H(2)X(z) (2a)

and
W(ejZWf/fs) — H(ejQWf/fs)X(ejQWf/fs), (26)

where f, is the input sampling rate.

e The second step is to pick up every Mth sample of
w(n) to form the output signal y(m) (the arrow down-
wards followed by M means this operation).

e y(m) is thus related to w(n) via
y(m) = w(mM) (3)

so that y(0) = w(0), y(1) = w(M), y(2) = w(2M) and
SO on.

e The sampling rate of y(m) is thus ﬁ = fs/M and
the new baseband is [0, fs/Q] =10, (fs/M)/2].

12



Block Diagram for Decimation by an Integer Fac-
tor M
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e It can be shown that the z- and Fourier transforms

of the decimated signal y(m) are given by

M-1
1 M 127k/M
Y(z2) = M;%W /M g2mk /M) (4a)
and (z = e/27//(fs/M))
M—1
Y(eﬂﬂf/(fs/M Z W ( e 27T/fs)(f+kfs/M)) (4b)
k 0

e In the above equation, the term for k£ = 0, that is,
W (e271/f5) is the frequency component staying in the
new baseband region |f| < fs/Z = (fs/M)/2 before the
sampling rate reduction.

e The other terms W (e/@m/f)I+Efs/M)Y for | =12, ...,
M — 1 are the undesired components aliasing from
(k—=1/2)fs/M < f < (k+1/2)fs/M into the new base-
band |f| < fo/2 = (fo/M)/2.

e The aliasing or overlapping of several terms can be
avoided by requiring that before decimation W (e/?™/ / /s)
is practically nonzero only in the new baseband |f| <
£.]2 = (fs/M)/2. In this band, it is then true that
Y (221 /Us/M)Y g W (327 1/ Fs)).

o In the ideal case, it is desired that Y (e/2™f/{fs/M)) ~
e~12me/fs X (e327F/5)) | that is, y(m) is a delayed and dec-
imated version of z(n) in the frequency band |f| < f,/2
= (fs/M)/2. (Note that some delay is always needed

when filtering a signal.)
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e This is achieved by designing H(z) to satisfy

H (/2 //1s) {Gﬂmf/fs for f < (fs/2)/M
0 for (f,/2)/M < f < (f,/2).
()

o If the phase characteristics is not of importance, then
it is desired that |V (e/2™//Us/M))| | X (e?27F 11N for
1 < Fo/2 = (fo/M))2
e In this case, it is required that

]H(ej%f/fS)] ~ {1 for f < (fs/2)/M (6)

0 for (fs/2)/M < f < (fs/2).

Comment 1: In Egs. (4) the multiplier 1/M comes
just from the use of the mathematics. The signal lev-
els in the time domain remain the same.
Comment 2: In Eq. (4a), instead of e/27k/M — g—j2mk/M
is usually used. In this case, (f + kfs/M) becomes (f —
kfs/M) in Eq. (4b). The basic reason for our selection
i1s the fact that the explanation of aliasing becomes
more straightforward.
o The role of the filter with transfer function H(z) is
thus similar to the analog anti-aliasing filter: the sig-
nal components of the input sequence z(n) outside the
range —fg/Q < f < ﬁ/2 should be attenuated in order

to avoid aliasing.
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A Simple Way of Checking How the Frequency

- Components Are Aliasing

The following figure illustrates in the M = 5 case how
the components from the range (f;/2)/M < f < f,/2
are aliasing into the new baseband 0 < f < (f,/2)/M.

1 | ] | | -

(ts/2)f5  2(tsl2)/5 3(t/2)/5 Alfs[2)/5  fTsl2

0 (f/2)/5
2(fs/2)/5
3(fs/2)/5
4(fg/2)/5

fg/2
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Requirements for H(z) in the Decimation Case

o There exist three ways of stating the criteria for H(z).
e In order to make the consideration of interpolators

the same, N = M and the following structure are used:

I vy B e BT
fs fs fs=fs/N

e In terms of the angular frequency w = 2 f/f,, they

can be stated as
1—6, <|H(e™)| <1+6, for wel0,an/N], (7a)

where o < 1, and

|H(e?%)] <6, for w e Q,, (7b)
where
( [x/N, =] for Case A
[N/2]
2k —a)m . (2k+oa)w
Q= < kL_Jl[ oo mnty o ™l
for Case B
\ (2 —a)n/N, =] for Case C.

(7¢)

e Similarly, in terms of the ’real’ frequency, these crite-
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ria can be stated as

1— 6, < |H(e?™/| <146, for wel0,a(f,/2)/N],

(8a)
where o < 1, and
|H(e3? 1155 < 5§, for we X, (8)
where
[( s/2)/N, fs/2] for Case A
| N/2]
2k — S 2 . 2k s 2
XS _ % [( ﬁ)f/ ’ mm(( —|_]\(;5)f/ 7 fS/Q)}
. for Case B
L [(2 = a)(fs/2)/N, fs/2] for Case C.

(8¢)

e In all the cases, the signal is preserved in the pass-
band region [0, a(fs/2)/N] with « < 1.

e In Case A, all the components aliasing into the new
baseband |0, (fs/2)/N] are attenuated.

e In Case B, all the components aliasing into the pass-
band [0, a(fs/2)/N] are attenuated, but aliasing is al-
lowed into the transition band [a(fs/2)/N, (fs/2)/N].

e In Case C, aliasing is allowed into the transtion band
a(fs/2)/N,  (fs/2)/N] only from the band
(£/2)/N, (2= a)(f,/2)/N].

e Case B and C specifications can be used, for instance,

in audio applications when f;/N=44.1 kHz and o =

0.907. In this case the transition band is between 20
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kHz and 22.05 kHz, that is, outside the frequency range
a human ear is able to hear.

e Page 20 shows the responses for N = 10, a = 0.5,
and 9, = 0; = 0.08 in these three cases. The pass-
band region is thus in terms of the ’real’ frequency
0, 0.05(fs/2)] and in terms of the angular frequencies
[0, 0.057].

e For Case A, the stopband region is in terms of the
angular frequencies [r/10, =w] and in terms of the ’real’
frequency [(£,/2)/10, f./2]

e For Case B, the stopband region is in terms of the
angular  frequency the union of the bands
[1.5w/10, 2.57], [3.57/10, 4.57], [5.57/10, 6.57],
[7.57/10, 8.57], and [9.57/10, .

e In terms of the 'real’ frequency, the stopband region
is  the union of the bands [1.57/10, 2.57],

3:5(fs/2)/10,  4.5(fs/2)],  [5.5(/s/2)/10,  6.5(fs/2)],
7.5(fs/2)/10, 8.5(fs/2)], and [9.5(f,/2)/10, fs/2].

e F'or Case C, the stopband region is in terms of the

angular frequency [1.57/10, 7] and in terms of the real
frequencies [1.5(fs/2)/10, fs/2].
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Example Case A, Case B, and Case C Specifica-
tions: N =10, a = 0.5, and § = (.08

Case A Specifications

1.08

0.902

Amplitude

0.08 AVAVAVAVEAVAVAVAVAVAVAVAVAVAVAVS
1

Oo 0.05 0.1
Frequency/(fS/Z) or Angular Frequency w/n

Case B Specifications

1.08
0.902

[0}
©
=
=
S
<

0'08

0 005 0.15 0.35 556 065 075 085 0.95 1
Frequency/(f /2) or Angular Frequency w/rt
Case C Specifications
1.08

0.902 \

0.08 LN N TN TSNS TS ]
0

0 0.050.10.15
Frequency/(fs/2) or Angular Frequency o/nt

Amplitude
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Interpolation by an Integer Factor L

e When increasing the sampling rate by an integer fac-
tor L, the overall system is constructed as shown on
the next page.

e In the first step, L — 1 zero-valued samples are in-
serted between the existing input samples (the arrow
upwards followed by L means this operation).

e Ience,

w(m) =

{ z(m/L), m =0,4&L,+2L,... (9)

0, otherwise.

e The sampling rate of w(m) is thus fs = Lf; and the
new baseband is |f| < fs/2 = Lf;/2, that is, L times
that of the input signal.

e The z- and Fourier transforms of the interpolated sig-

nal w(m) are given by
Wi(z) = X (21 (10a)
and
W (ed2m /Ty = X (ed2nt/(Fs/ D)y — X (e327f115), (100)

o As illustrated on the next page, the Fourier trans-
form of w(m) contains in the increased basedband not
only the baseband frequencies of z(n) (i.e., |f] < f)
but also images of the old baseband centered at +f, =
+f,/L, £2f, = +2f,/L, - -.
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Block Diagram for Interpolation by an Integer
Factor L

X{n w(m
1:( ) TL A( ) - He) Ay(m)
S fg = Lfs fg = Lfg
Ix(e]ZﬂZf/ fs)lA

1
A fs/2
iW(e j2nf/ fs)l A
£ /2 A T
A (f/2)/L s
|H(e]27tf/ fs)lA S

-

i

roo
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e The role of the filter with transfer function H(z) is
thus to preserve the original baseband |f| < f,/2 =
(ﬁ/Q) /L and to attenuate the unwanted higher
frequency components (images) in the new baseband
fl < ﬁ/z = Lfs/2, that is, the frequencies
(Fo/2)/L < |f] < fo/2.

e In the ideal case, it is desired that Y (e/277/(fs/M)) gp-
proximates closely e /S X (327 F/f))  for |f] <

(ﬁ /2)/L and zero elsewhere in the new increased base-
band.

e In this case, y(m) is a delayed and interpolated ver-
sion of z(n) in the frequency band
< £./2 = (f/M)/2.

e Note that the multiplier L is required to preserve the
existing input samples in the time domain at the same
level as well as raising the inserted zero-valued samples
as 'Interpolated’ samples.

e This is achieved by designing H(z) to satisfy

H (27T o {L“ mells for f < (f/2)/1

0 for (fo/2)/L < f < /2.
(11)

e If the phase characteristics is not of importance, then
it is desired that

‘H(€j27rf/fs>‘ ~ {L for |f/\| S (ﬁ/z)/L R (12>
0 for (fs/2)/L < f< fs/2.
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Requirements for H(z) in the Interpolation Case

e In order to state the criteria for H(z) in a manner

similar to the case of decimation we use the following

structure:
n w(m
—>:(( ) IN | (m NH(z) y(m)
fg = fg/N fg = /N fs

e The main difference is that now the input and out-
put sampling rates are f;/N and f;, instead of f, and
Lfs;. Furthermore, the interpolation ratio is IV, instead
of L.

e These modifications emphasize the duality between
the decimator and interpolator designs.

e After designing the decimator for the integer deci-
mation factor N, the corresponding interpolator can be
generated as follows:

(a) Replace the decimation block after filtering by the
transfer function H(z) by the corresponding interpola-
tion block before filtering by the transfer function
NH(z).

(b) Replace the input and output sampling rates f, and
fs/N by fs/N and f,, respectively.
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e Note that if the input signal satisfies for the input
sampling rate of f,/N |X(e/2™f/Us/N)) 0 for afs/2)/N
< |f| < (fs/2)/N, then the Case B or Case specifica-
tions, stated earlier in the decimation case, can be di-

rectly used for attenuating the extra images.
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Sampling Rate Conversion by L/M with L and M
Being Integers

e Sampling rate conversion by L/M with both L and
M being integers can be performed with the aid of a
single filter.

e This is exemplified on Pages 28 and 29 in the L = 3
and M = 2 case and in the L = 2 and M = 3 case,
respectively.

e Note that in the first case the sampling rate is in-
creased by 3/2 and in the second case decreased by 3/2.
e In both cases, the sampling rate is first increased by
L so that the resulting sampling rate is ]?3 = Lf,.

o In the first case L = 3 > M = 2. Therefore, H(z)

acts like a filter for interpolation and satisfies

(1) {L for |f| < (f/2)/L 13
0 for (fi/2)/L < f<f/2

e What is left is to reduce the sampling rate by M =
2, that is, to attenuate the signal components in the
range [(fs/2)/2, f./2] in order to give the output sam-
pling rate f, = f,/2 = (3/2)fs.
o As seen from Page 28, the filter with transfer func-
tion H(z) has already attenuated these components.
e Therefore, every second sample at the output of this
filter can be directly picked up without causing signifi-

cant aliasing.
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e In the L = 2 and M = 3 case, the role of H(2) is
different due to the fact that M > L.

e In this case, H(z) has to attenuate the signal compo-
nents in the range [(fA’s/Q)/B, ﬁ/2] in order to give the
output sampling rate f, = ]?S = (2/3) fs.

e Simultaneously, the images caused by interpolation are
attenuated as well as a part of the original baseband,
as illustrated on Page 29.

e Therefore, H(z) acts like a filter for decimation with
the execption that in the passband the desired value is

L and satisfies

() {L for |f| < (f/2M )
0 for (fu/2)/M < f < [,/
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Sampling Rate Conversion by L/M, L =3> M =2
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Sampling Rate Conversion by L/M, L=2< M =3
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X0 4L

: A
IX(e j2rt/ fs)|

A
|S(912nf/ fS)I

. A
IH(eIZEf/ fS)I

. A
IT(ei2™f/ fs)] |

s(k)

A

H(z)

t(1) * M y(m)
s Te = fs/M

. -~ A
ly(ei2nf/ fs)| |
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General Criteria for Sampling Rate Conversion by
L/M with L and M being integers

e In the most general case, the sampling rate increase
by a factor of L must be performed first resulting in
the sampling rate ]?3 = Lf,.
e The sampling rate fs — ]?S/M = (L/M)fs is achieved
by designing H(z) to satisfy

(1) {L for If| < (A/2/D 4
0 for (R/2)/D<f<F/2
where
D = max(L, M). (16b)
e If L and M are very large integers or the sampling
rate conversion factor is arbitrary, it is more beneficial
to use the technique to be described in Part III of this

course.
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Partly Digital Anti-Aliasing Filter

e The requirements for the analog anti-imaging filter can
be made significantly milder and a very linear phase
performance can be achieved in the passband by using

the following structure:

=0

fs - rfs '

— Hc(S) —‘/*_’ Hd(Z)—?—’ ‘F >
rfs rfs ;fS

e In this case, the output sampling rate of the analog
filter with transfer function H.(s) is f; = rfs, where f,

is final sampling rate.

e This filter is followed by a decimator with transfer
function Hy(z) decimating by a factor of r to generate
the desired output sampling rate.

e For the overall system, the frequency response is ex-
pressible as Hue(j27f) = H.(j2m f)Hy(el?™1/(rf5)],

e It is desired to design the overall system such that
the maximum deviation of |H,ve(j27f)| from unity in
the passband [0, afs/2] with a < 1 is less than or equal
to 0p, and the maximum deviation from zero is less than
or equal to 05 for f > fs/2.

e As shown on Page 33, the design can be accomplished
in two stages:

e In the first step, H.(s) is designed such that its am-
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plitude response oscillates within 1+ 47 in the passband
0, afs/2], the maximum amplitude deviation from zero
is less than or equal to 6; for f > (2r — 1)f,/2, and
the group delay variation around the passband average
is minimized.

e Here, 0, can be significantly larger than J,.

e When starting the stopband edge at f = (2r — 1) f,/2,
the frequency components aliasing to the final baseband
0, fs/2] are well attenuated, as shown on Page 33.

e There 1is significant aliasing into the band
\fs/2, rfs/2]. These components are well attenuated by
the decimator.

e In the second step, Hy(z) is designed such that it
provides the desired performance for the overall system
for 0 < f <rfs/2.
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Design of a Partly Digital Anti-Aliasing Filter

b IH (j2mf)]
VaN

aliasing

Os <
0 —i NTRY: -
Als 1Is Ils =1
0 =577 ; : s f
(a)
i
L IH (j2f) Hyle ™)
1+5p”‘ Y o —I
1-8, |
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Example

o Criteria: a = 0.8, r = 3, ¢, = 0.00576 (0.1-dB over-
all passband variation), ;s = 0.000316 (70-dB stopband
attenuation, suitable for a 12-bit converter), the maxi-
mum allowable group delay ripple in terms of the final
sampling period 1" is 0.017".

e In the following, there are two pages illustrating the
characteristics of the optimized overall design.

e Figures (a) and (b) show the amplitude and group
delay responses for the optimized fourth-order analog fil-
ter. The desired group delay variation is achieved by
selecting the passband ripple to be 4, = 0.037.

e Figure (c) shows the response of a linear-phase FIR
decimator filter Hy(z) required for the system to meet
the amplitude criteria, as shown in Figure (d).

e If no decimator is used, then an elliptic filter of or-
der nine is required to meet the same criteria. The
phase response of this filter is wvery mnonlinear in
the passband. Furthermore, the tuning of the elliptic
filter is significantly more difficult.
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Example Partly Digital Anti-Aliasing Filter

IN dB
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100T , ,
0.NMT
0.75T _|
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0 | |
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LOG FREGQUENCY
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Example Partly Digital Anti-Aliasing Filter

IN dB
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Sigma-Delta A /D Conveter

e An extreme case is an A/D conveter based on the
use of sigma delta modulator.
e In the case of a converter shown on the next page,

r = 64 and a simple analog RC filter can be used.
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A Stereo Sigma-Delta A /D-Converter with Over-

sampling Ratio of 64
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Design of a Narrowband Linear-Phase FIR Filter

Example: Passband edge = 0.0095 - f/2
Stopband edge = 0.01 - fg/2
Passband ripple = 0.001
Stopband ripple = 0.0001 (80 dB)

Direct-form conventional FIR filter of order 15590:
7796 multiplications per input sample

FIR filter implemented using decimation and
interpolation:

x(n)

—>H1(Z)——>$15_>H2(Z)—>*6 *
H3(z)
!(n) 15H1(z)<—$15 i 6H2(Z)<—*6 Bamm—

H{(z): order = 39
H»>(z): order = 40
Ha(z): order = 197

Only 4.16 multiplications per input sample
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A Filter Bank for Subband Coding

x(n)

Ho(z) > yM——=AM|—| Fy(2)

Hi(z) F~yM——={dM[—= F(2)

oo

T

H1(2) ] § M—{ 4 m}—] Fi1(2) —»@—»
X(n)

The Hi(z)'s and Fg(z)’s can be designed such that
Q(n):x(n-K). This filter bank is used for subband coding.

Ho(z) Hqy(z) Ho(2) Hu-
Fo(z) Fi(z) Fy(2) FI\“,I:_: ((z))
fs 2fg 3fs g f_;
2M 2M 2M 2M 2
j After decimation by M
/

A
f A
> fs= fs/M
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